GCE A LEVEL

| Page 1 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: | :---: |
| | A and AS LEVEL - Specimen Paper | 9702 | 05 |

Question 1

Planning (15 marks)

Defining the problem (3 marks)
p is the independent variable OR vary $p \quad 1$
f is the dependent variable OR measure f and $p \quad 1$
Variable to be controlled
e.g. temperature, frequency of sound source

Methods of data collection (5 marks)

Workable arrangement
Should include container, source of sound, pump, microphone, CRO
Doubtful arrangement, poor diagram or one missing detail scores one mark
Method of varying p
1
e.g. use of pump to remove air or valve to allow air in

Method of measuring p
e.g. Bourdon gauge/pressure gauge/manometer

Method of measuring f

Should include reference to CRO timebase and $f=1$ /period

Method of analysis (2 marks)

Plot f against p^{2}
Equation is correct if graph is a straight line through the origin

Safety considerations (1 mark)

Safety precaution, e.g. screen/goggles/fuses

Additional detail (4 marks)

Additional details
Relevant points might include:
Second variable to be controlled
Method of controlling variables
Specified sound source (e.g. electric bell/buzzer/speaker)
Use of signal generator with speaker
Difficulty of detecting quiet sounds at low pressures
Using CRO y-sensitivity to adjust for sound levels
Need to seal points where wires pass through bell jar
Monitor temperature with thermometer

Page 2	Mark Scheme	Syllabus	Paper
	A and AS LEVEL - Specimen Paper	9702	05

Question 2

Analysis, conclusions and evaluation (15 marks)

Approach to data analysis (1 mark)
(a) $\quad R^{2}=c^{2} E^{3}$, so expect a straight line through the origin

Table of results (2 marks)

Table Column headings
R^{2} / cm^{2} and E^{3} / MeV^{3}
Allow $R^{2}\left(\mathrm{~cm}^{2}\right)$ and $E^{3}\left(\mathrm{MeV}^{3}\right)$
Table Values of R^{2} and E^{3}
$16.0 \quad 156$
$18.9 \quad 183$
$23.0 \quad 221$
$25.5 \quad 248$
$32.5 \quad 310$
All correct for one mark.
3 significant figures required (allow 4 s.f.)

Graph (3 marks)

Graph Points plotted correctly
All five required for the mark
Graph Line of best fit
Must be within tolerances.
Graph Worst acceptable straight line
Must be within tolerances.

Conclusion (4 marks)

(c)(iii) Gradient of best-fit line

The hypotenuse of the Δ must be greater than half the length of the drawn line.
Read-offs must be accurate to half a small square.
Check for $\Delta y / \Delta x$ (i.e. do not allow $\Delta x / \Delta y$).
(d) \quad Gradient $=c^{2}(=0.107)$

Does not have to be explicitly stated: may be implicit from working
(d) Value of c
$=0.327$ (allow 0.320-0.350)
(d) Unit of c
cm MeV

Page 3	Mark Scheme	Syllabus	Paper
	A and AS LEVEL - Specimen Paper	9702	05

Treatment of errors (5 marks)

Table Errors in R^{2}
0.4
0.4 allow 0.5
0.5 allow 0.4
0.5
0.6

Graph Error bars plotted correctly
(c)(iii) Error in gradient

Must be calculated using gradient of worst acceptable straight line
(d) Method of finding error in c
i.e. limit of error range in c from square root of limit of error range in gradient Allow $0.5 \times$ percentage error in gradient
(d) Value for error in c
0.009 (allow $\pm 0.007- \pm 0.011$)

